SYLLABUS AND CURRICULUM OF DIPLOMA IN D M R I T COURSE

DIPLOMA IN MEDICAL RADIOLOGY & IMAGING TECHNOLOGY (DMRIT)

DMRIT trains students in operating imaging equipment like X-ray, CT scan, MRI, ultrasound (basic), mammography, and fluoroscopy, as well as in processing, analysing, and handling diagnostic images..

Course Overview

- Full Form: Diploma In Medical Radiology & Imaging Technology (DMRIT)
- Duration: 2 Years + 6 Months (Internship)
- > Eligibility:
 - 10+2 pass (Science stream PCB or PCM usually preferred)
 - Minimum 45–50% marks
 - o On the basis of 10th (Only Certificate Courses)
 - o On the basis of certificate diploma in same course (lateral entry)

Career Opportunities after D M R I T

- **➤** Hospitals: Government & private
- Diagnostic Centers
- Research Labs
- Radiology Equipment Companies

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

SEMESTER - I

PAPER	SUBJECT NAME	THEORY	PRACTICAL	THEORY	PRACTICAL
CODE		HOURS	HOURS	MARKS	MARKS
DMRIT101	BASIC HUMAN	45 Min	1 Hrs.	50	50
	ANATOMY &				
	PHYSIOLOGY				
DMRIT102	INTRODUCTION TO	45 Min	1 Hrs.	50	50
	HEALTH CARE				
	SYSTEM & PATIENT				
	CARE				
DMRIT103	BASIC PHYSICS &	45 Min	1 Hrs.	50	50
	RADIATION				
	PHYSICS				
DMRIT104	INTRODUCTION TO	45 Min	1 Hrs.	50	50
	RADIOGRAPHY				

BASIC HUMAN ANATOMY & PHYSIOLOGY

THEORY

1. Introduction

- Definition & scope of anatomy and physiology
- Anatomical terminology: planes, positions, directional terms
- Levels of structural organisation: cells \rightarrow tissues \rightarrow organs \rightarrow systems
- Overview of human body systems

2. Cells and Tissues

- Structure of a typical human cell
- Cell organelles and their functions (nucleus, mitochondria, ribosomes, etc.)
- Cell division (mitosis & meiosis)
- Basic tissue types:
 - o **Epithelial tissue** (types, functions, locations)
 - o **Connective tissue** (bone, cartilage, blood, adipose, ligaments)
 - o **Muscle tissue** (skeletal, cardiac, smooth)
 - Nervous tissue (neurons, neuroglia)

3. Skeletal System

- Overview of human skeleton
- Classification of bones
- Structure & composition of bone

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Types of joints and their movements
- Major bones of:
 - Skull
 - o Vertebral column
 - Thoracic cage
 - Upper limb
 - Lower limb
 - o Pelvis

4. Muscular System

- Types of muscles
- Structure of skeletal muscle fibre
- Mechanism of muscle contraction (sliding filament theory)
- Major muscles of the body and their functions

5. Circulatory System

- Structure and functions of the heart
- Blood vessels: arteries, veins, capillaries
- Blood circulation: systemic & pulmonary
- Cardiac cycle & heart sounds
- Blood pressure: definition, normal range, regulation

6. Blood and Lymphatic System

- Composition and functions of blood
- Blood cells: RBCs, WBCs, platelets
- Blood groups & Rh factor
- Lymph & lymphatic vessels
- Lymph nodes & their functions

7. Respiratory System

- Anatomy of respiratory tract
- Structure & functions of lungs
- Mechanism of breathing (inspiration & expiration)
- Exchange of gases
- Regulation of respiration

8. Digestive System

- Anatomy of alimentary canal (mouth to anus)
- Digestive glands: salivary glands, liver, pancreas
- Digestive processes & absorption of nutrients

9. Nervous System

- Divisions: central, peripheral, autonomic
- Structure and functions of brain (cerebrum, cerebellum, brainstem)
- Spinal cord structure and reflex arc
- Cranial and spinal nerves

10. Endocrine System

- Endocrine glands: pituitary, thyroid, parathyroid, adrenal, pancreas, gonads
- Hormones & their functions
- Disorders of endocrine glands (brief)

11. Urinary System

- Structure of kidney & nephron
- Urine formation
- Ureters, urinary bladder, urethra

12. Reproductive System

- Male reproductive organs & gametogenesis
- Female reproductive organs & menstrual cycle
- Fertilisation & pregnancy (brief)

13. Special Senses

- Eye: structure, functions, image formation
- Ear: structure, hearing mechanism, balance
- Taste and smell organs

PRACTICAL

Study of Anatomical Models

- Identification of human skeleton and its parts:
 - Skull (individual bones and sutures)
 - o Vertebral column (cervical, thoracic, lumbar vertebrae)
 - Thoracic cage (sternum, ribs)
 - o Upper limb bones (humerus, radius, ulna, carpals, metacarpals, phalanges)
 - o Lower limb bones (femur, tibia, fibula, tarsals, metatarsals, phalanges)
 - Pelvic bones
- Identification of major **joints** and their types

Identification of Organs & Systems (Models/Specimens)

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Heart (external & internal features)
- Lungs (lobes, bronchi)
- Kidney (cortex, medulla, pelvis)
- Brain (cerebrum, cerebellum, brainstem)
- Eye (parts: cornea, lens, retina, optic nerve)
- Ear (outer, middle, inner structures)
- Digestive tract model (mouth, oesophagus, stomach, intestines)
- Reproductive system models (male & female)

Histology Practical (Microscopy)

- Identification of prepared slides:
 - o Epithelial tissues (simple squamous, cuboidal, columnar, ciliated)
 - Connective tissues (bone, cartilage, blood smear)
 - Muscle tissues (skeletal, cardiac, smooth)
 - Nervous tissue (neurons)

Blood & Circulatory System Experiments

- **Blood grouping** (ABO and Rh factor) demonstration
- **Hemoglobin estimation** demonstration
- **Peripheral blood smear** examination demonstration
- Measurement of **pulse rate**
- Measurement of **blood pressure** using sphygmomanometer

Respiratory System Practical

- Demonstration of **spirometer** (lung capacity) optional
- Observation of respiratory movements

Nervous System Practical

- Demonstration of **reflex actions** (knee jerk reflex)
- Sensory testing (touch, temperature, pain demonstration)

Charts, Diagrams & Flowcharts

- Identification of systems from wall charts:
 - Skeletal, muscular, circulatory, respiratory, digestive, nervous, endocrine, urinary, reproductive, special senses
- Drawing and labelling basic system diagrams in practical notebook

INTRODUCTION TO HEALTH CARE SYSTEM & PATIENT CARE

THEORY

1 - Overview of Health Care System

- Definition of health and illness (WHO definition)
- Dimensions of health (physical, mental, social, spiritual)
- Levels of health care: primary, secondary, tertiary
- Organisation of the health care delivery system in India
- Roles of government, private sector, NGOs in health care
- Overview of diagnostic and imaging departments in hospitals

2 - Roles & Responsibilities of Health Care Professionals

- Duties and ethics of radiology/imaging technologists
- Inter-professional collaboration in patient care
- Scope and limitations of paramedical staff in radiology
- Legal responsibilities in handling patients and medical images

3 - Hospital Departments & Interactions

- Overview of major hospital departments:
 - Outpatient (OPD)
 - Inpatient (IPD)
 - Emergency / Casualty
 - o ICU / CCU
 - Operation Theatre
 - Laboratory services
 - o Radiology and Imaging Department
- Communication and coordination between departments

4 - Patient Care Fundamentals

- Principles of patient care in radiology
- Patient rights and responsibilities
- Consent: informed and implied
- Cultural and psychological aspects of patient care
- Communication skills for patient interaction
- Handling special patients (pediatric, geriatric, pregnant women, disabled)

5 - Patient Preparation for Imaging

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Pre-procedure preparation (history taking, allergies, fasting)
- Patient positioning techniques for X-ray, CT, MRI, ultrasound
- Use of immobilisation devices
- Contrast media: types, indications, preparation, patient instructions
- Post-procedure care and observation

6 - Safety in Patient Care

- Basic life support (BLS) principles
- Transporting patients safely (wheelchair, stretcher, bed-to-table transfer)
- Fall prevention strategies
- Radiation protection measures for patients and staff
- Infection control and standard precautions

7 - First Aid & Emergency Care in Imaging Department

- First aid for fainting, seizures, falls, burns
- Management of contrast media reactions (mild, moderate, severe)
- CPR (Cardiopulmonary Resuscitation) basic steps
- Emergency equipment in the radiology department (crash cart, oxygen cylinder)

8 - Ethical & Legal Aspects

- Patient confidentiality and data protection
- Medical ethics in diagnostic imaging
- Documentation and record-keeping in patient care
- Medicolegal cases (MLC) handling and protocols

PRACTICAL

Orientation to Hospital & Radiology Department

- Guided tour of:
 - Outpatient (OPD) & Inpatient (IPD) units
 - Emergency / Casualty department
 - o ICU / CCU
 - o Radiology & Imaging department layout (X-ray, CT, MRI, Ultrasound)
- Observation of workflow from patient arrival to imaging report delivery

> Patient Identification & Communication

- Checking patient details (name, age, ID number) before imaging
- Communicating procedure details to patients
- History taking for imaging (present illness, past illness, allergies, pregnancy status)
- Obtaining informed consent (role-play and real cases)

Patient Positioning & Transfer

- Bed-to-stretcher and stretcher-to-table transfer techniques
- Wheelchair handling and safety checks
- Positioning for common radiographic views (chest, limb, skull)
- Use of immobilisation devices (sandbags, straps, foam pads)

> Patient Preparation for Imaging

- Preparing patients for contrast studies (fasting, hydration, allergy checks)
- Removing metallic objects before MRI and X-ray
- Proper gowning for patients
- Monitoring patient comfort during the procedure

First Aid & Emergency Response

- Demonstration & practice of:
 - o CPR (Cardiopulmonary Resuscitation)
 - Recovery position for unconscious patients
 - Management of fainting, seizures, falls
- Identifying and responding to mild, moderate, and severe contrast reactions
- Location and use of emergency equipment (oxygen cylinder, suction apparatus, crash cart)

Infection Control Practices

- WHO handwashing steps demonstration & practice
- Use of PPE (gloves, masks, aprons, caps)
- Cleaning & disinfection of radiographic cassettes, tables, and accessories
- Waste segregation and disposal according to biomedical waste rules

Radiation Protection for Patient

- Proper use of lead aprons, thyroid shields, gonadal shields
- Collimation and exposure time reduction
- Maintaining safe distances and proper positioning

> Documentation & Record Maintenance

- Filling patient registration and consent forms accurately
- Recording imaging procedures in departmental logs
- Handling and storing patient reports and digital images (PACS entry)

> Case Discussions & Simulations

Discussion of special patient handling (pediatric, geriatric, trauma cases)

Mock drills for emergency evacuation and resuscitation in radiology

BASIC PHYSICS & RADIATION PHYSICS

THEORY

1 - Fundamentals of Physics

- Physical quantities & units
 - o SI units, measurement systems, accuracy, and errors
- Matter & states
 - o Solids, liquids, gases basic properties
- Mass, weight, and density
- Work, power, and energy
 - Types of energy kinetic, potential, mechanical, heat, light, electrical

2 - Mechanics

- Motion types, speed, velocity, acceleration
- Newton's laws of motion applications in radiology (table movement, C-arm movement)
- Force, torque, and friction
- Momentum & impulse
- **Gravity** acceleration due to gravity, weight changes in lifts/tilt tables

3 - Heat & Thermodynamics

- Modes of heat transfer conduction, convection, radiation
- Temperature scales Celsius, Fahrenheit, Kelvin
- · Expansion of solids, liquids, gases
- Thermometers types & uses in healthcare
- Thermal conductivity & insulation in radiology rooms

4 - Light & Optics

- Nature & properties of light
- Reflection, refraction, and total internal reflection
- Lenses & mirrors types and uses in optical devices
- Optical instruments in radiology (viewing boxes, magnifiers)
- Fibre optics principle and uses in endoscopy and imaging

5 - Sound & Ultrasound Physics

- Properties of sound waves frequency, wavelength, velocity, amplitude
- Audible and ultrasonic ranges
- Production of ultrasound waves

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

TO DE LA COLON STORY OF THE POLICY OF THE PO

Basic principles of medical ultrasonography

6 - Electricity & Magnetism

- Electric charges, current, voltage, resistance
- Ohm's law & electrical power
- Series & parallel circuits
- Capacitors & inductors (basic principles)
- Magnetism types, magnetic fields, electromagnetism
- Electric safety in radiology departments

7 - Electromagnetic Waves

- Spectrum of electromagnetic radiation radio waves to gamma rays
- Properties of electromagnetic waves
- Importance of X-rays & gamma rays in imaging

8 - Fundamentals of Radiation Physics

- Discovery of X-rays properties and uses
- Atomic structure protons, neutrons, electrons, atomic number, mass number
- Isotopes & radioisotopes
- Excitation & ionization
- Production of X-rays:
 - X-ray tube construction & working
 - o Bremsstrahlung & characteristic radiation
 - Factors affecting X-ray production (kVp, mA, exposure time)

9 - Interaction of Radiation with Matter

- Absorption, scattering, and transmission of X-rays
- Photoelectric effect
- Compton scattering
- Pair production (basic concept)
- Attenuation of X-rays in tissues

10 - Radiation Units & Measurement

- Exposure, absorbed dose, equivalent dose, effective dose
- Units: Gray (Gy), Sievert (Sv), Becquerel (Bq), Coulomb/kg
- Dose measuring devices: film badges, TLDs, ionization chambers

11 - Biological Effects of Radiation

- Somatic & genetic effects
- Deterministic & stochastic effects

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

Acute radiation syndrome (overview)

12 - Radiation Protection

- ALARA principle (As Low As Reasonably Achievable)
- Time, distance, shielding
- Protective devices: lead aprons, thyroid shields, gonadal shields
- Radiation protection for patients, staff, and public

13 - Quality Assurance in Radiation

- Quality control tests for X-ray equipment
- Regular calibration and maintenance
- Darkroom & digital image quality checks

PRACTICAL

Units, Measurement & Basic Instruments

- Demonstration and use of measuring devices (vernier caliper, micrometer, measuring tape)
- Conversion between different units (Celsius ↔ Kelvin, meters ↔ centimeters, etc.)
- Determination of density of solids and liquids

Mechanics Practical

- Verification of Newton's laws of motion (simple apparatus)
- Study of pulley system and calculation of mechanical advantage
- Demonstration of force, torque, and balance in radiographic equipment movement (X-ray tube stand, C-arm)

> Heat & Temperature

- Measurement of temperature using clinical thermometer and thermocouple
- Demonstration of heat transfer (conduction, convection, radiation)
- Expansion of solids/liquids simple experimental setup

Light & Optics

- Reflection and refraction experiments using plane and curved mirrors
- Determination of focal length of convex lens
- Demonstration of total internal reflection (TIR)
- Fibre optic cable demonstration (light transmission)

Sound & Ultrasound

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Demonstration of sound wave properties using tuning fork & resonance tube
- Frequency measurement of a tuning fork
- Demonstration of ultrasound gel use and transducer coupling on phantom (if available)

Electricity & Magnetism

- Verification of Ohm's law using resistors
- Series and parallel circuit setup and measurement of current & voltage
- Demonstration of magnetic field around a conductor using iron filings
- Use of multimeter for measuring voltage, current, resistance
- Safe handling of electrical equipment in radiology department

Electromagnetic Waves

- Demonstration of different parts of the electromagnetic spectrum via charts/models
- Identification of X-ray, gamma, and visible light wavelength ranges

Radiation Physics Demonstrations

- Identification of parts of an X-ray tube and control panel
- Demonstration of X-ray production by varying kVp, mA, and exposure time (phantom use)
- Study of beam collimation and effect on image & dose
- Demonstration of inverse square law for radiation intensity

> Interaction of Radiation with Matter

- Demonstration of attenuation by different materials (lead, aluminium, plastic, tissue-equivalent material) using dosimeter readings
- Observing image quality differences with varying thickness

> Radiation Measurement & Safety

- Demonstration of personal dosimeters (TLD badge, film badge)
- Using a survey meter or ionization chamber to measure radiation levels
- Safe positioning of radiographer during exposure
- Use of protective devices: lead apron, thyroid shield, gonad shield

Quality Control in Imaging

- Darkroom quality control (for film systems) light leakage test, safelight test
- Image quality check in CR/DR systems (resolution, contrast)
- Regular maintenance checks on X-ray units (demo only)

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com

> 12. Record Work

- All practicals to be recorded with:
 - o Title of experiment/demonstration
 - Apparatus used
 - Procedure
 - Observations & readings
 - Result & precautions

INTRODUCTION TO RADIOGRAPHY

THEORY

1 - History & Development of Radiography

- Discovery of X-rays by Wilhelm Roentgen
- Early developments in medical imaging
- Evolution from film-based radiography to digital systems
- Overview of CT, MRI, Ultrasound, PET-CT advancements

2 - Basics of Radiography

- Definition & scope of radiography
- Difference between radiography, fluoroscopy, CT, MRI, and other imaging modalities
- Role of radiographer in the health care team
- Applications of radiography in diagnosis and treatment

3 - X-ray Production & Properties

- Structure and function of X-ray tube
- Mechanism of X-ray production (Bremsstrahlung & characteristic radiation)
- Properties of X-rays
- Factors controlling X-ray quality and quantity (kVp, mA, exposure time)

4 - Components of Radiographic Equipment

- X-ray machine parts (tube, collimator, control panel, generator)
- Image receptors film, CR cassettes, DR detectors
- Grids and bucky stands
- · Portable X-ray machines and mobile units

5 - Image Formation & Quality

- Principles of image formation
- Factors affecting image quality: density, contrast, resolution, distortion
- Geometric factors in radiography (SID, OID, focal spot size)

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

• Image artefacts – causes and prevention

6 - Radiographic Films & Processing

- Types of X-ray films and intensifying screens
- Film storage and handling
- · Darkroom layout and safelighting
- Film processing manual and automatic
- Common film faults and remedies

7 - Basics of Digital Radiography

- Principles of computed radiography (CR)
- Principles of direct and indirect digital radiography (DR)
- Advantages and limitations of digital systems
- PACS (Picture Archiving and Communication System) basics

8 - Radiation Protection in Radiography

- Hazards of ionizing radiation
- ALARA principle
- Time, distance, shielding
- Use of personal protective devices
- Radiation dose limits for patients and workers

9 - Patient Care in Radiography

- Preparing the patient for X-ray examination
- Positioning basics for chest, extremities, skull, spine
- Communication and reassurance
- Special considerations for pediatric, geriatric, trauma, and pregnant patients

10 - Legal & Ethical Aspects

- Importance of informed consent
- Confidentiality of patient information
- Record keeping in radiography
- Legal responsibilities of a radiographer

PRACTICAL

> Familiarization with Radiography Department

- Orientation to radiology department layout
- Identification of diagnostic areas: X-ray room, darkroom, processing area, console area

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.ggmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Introduction to CT, MRI, Ultrasound & Fluoroscopy rooms (overview only)
- Safety zones and restricted areas in radiology

> Radiographic Equipment Handling

- Identification and function of X-ray machine parts
- Control panel operation setting kVp, mA, exposure time
- Collimator adjustment and light field alignment
- Safe movement and positioning of X-ray tube and bucky stand
- Handling of portable/mobile X-ray units

Image Receptor Handling

- Loading and unloading of X-ray cassettes (film, CR)
- Proper handling of DR detectors
- Storage and care of cassettes and image plates

Basic Patient Positioning & Preparation

- Correct positioning for routine examinations:
 - Chest PA & AP view
 - Extremities (hand, wrist, elbow, knee, foot, ankle)
 - Skull (basic positions)
 - Spine (cervical, thoracic, lumbar basic views)
- Use of positioning aids: sponges, sandbags, immobilization devices
- Draping and patient comfort techniques

> Film Processing & Image Evaluation

- Darkroom entry and safelight precautions
- Manual film processing developer, fixer, washing, drying
- Automatic processor operation
- Identifying and rectifying common processing faults
- Basic image quality evaluation (density, contrast, sharpness)

Basic Digital Radiography Operations

- CR cassette loading/unloading in reader
- DR workstation interface basics
- Adjusting window width/level for image optimization
- Basic PACS uploading and retrieval of images

Radiation Protection Practices

- Demonstration of ALARA principle in practice
- Correct use of lead aprons, thyroid shields, gonad shields

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Use of radiation monitoring devices (TLD badge)
- Safe distance & shielding during exposure

Patient Care Skills in Radiography

- Patient identification and verification of examination request
- Communication skills during procedure explanation
- Assisting immobile, pediatric, and elderly patients during positioning
- Handling emergency situations in the X-ray room (e.g., fainting, breathing difficulty)

Maintenance & Quality Checks

- Daily equipment warm-up procedures
- Checking light field and radiation field congruence
- Visual inspection of cassettes, detectors, and screens
- Reporting equipment faults to supervisor

Practical Record & Assessment

- Maintenance of a **logbook** of cases assisted and performed
- Practical viva on equipment, positioning, and safety
- Evaluation based on skill, accuracy, and adherence to safety protocols

SEMESTER - II

PAPER CODE	SUBJECT NAME	THEORY HOURS	PRACTICAL HOURS	THEORY MARKS	PRACTICAL MARKS
			HOUKS	MAKKS	MAKKS
DMRIT201	CLINICAL	45 Min	1 Hrs.	50	50
	RADIOGRAPHY			1	
DMRIT202	RADIATION	45 Min	1 Hrs.	50	50
	PATHOLOGY				
DMRIT203	RADIATION	45 Min	1 Hrs.	50	50
	THERAPY				
	MACHINES				
DMRIT204	RADIOGRAPHY AND	45 Min	1 Hrs.	50	50
	IMAGING				
	TECHNIQUES				

CLINICAL RADIOGRAPHY

THEORY

1. Introduction to Clinical Radiography

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Definition, scope, and importance of clinical radiography
- Role of a radiographer in patient diagnosis and treatment
- Integration of radiography with other diagnostic modalities
- Workflow in a clinical radiology department

2. Radiographic Anatomy & Positioning

- **Skeletal System** Radiographic anatomy of:
 - Skull & facial bones
 - Spine cervical, thoracic, lumbar, sacrum, coccyx
 - o Thorax ribs, sternum, clavicle, scapula
 - o Upper limb shoulder, humerus, elbow, forearm, wrist, hand
 - o Lower limb pelvis, hip, femur, knee, ankle, foot
- **Soft Tissues** Lungs, heart, abdomen, urinary tract
- **Special Radiographic Views** Oblique, tangential, axial, lateral decubitus, weightbearing views

3. General Radiographic Techniques

- Patient preparation and consent
- Positioning principles anatomical planes, centering points
- Immobilization techniques
- Exposure factor selection (kVp, mA, time)
- Use of grids, cones, and collimators
- Image receptor selection film, CR, DR

4. Specialized Radiographic Procedures

- Contrast Media in Radiography
 - o Types (barium, iodine-based, air, CO₂)
 - Indications & contraindications
 - Preparation, administration routes, adverse reactions
- Contrast Studies
 - o Gastrointestinal tract barium swallow, meal, follow-through, enema
 - Genitourinary system IVP, MCU, RGU
 - Hysterosalpingography (HSG)
 - o Myelography, sialography, arthrography

5. Radiography of Body Systems

- Chest Radiography
 - Routine PA & AP
 - o Lateral, oblique, lordotic views
 - Pediatric chest radiography
- Abdominal Radiography
 - o Erect, supine, decubitus views

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

KUB studies

Skeletal Radiography

- Trauma series for suspected fractures
- o Special projections for orthopedic evaluation

• Spine Radiography

- o Cervical AP, lateral, oblique
- o Thoracic & lumbar AP, lateral
- Scoliosis series

6. Operation Theatre Radiography

- Role of radiographer in OT
- Use of mobile X-ray units in OT
- C-arm fluoroscopy operation & safety precautions
- Aseptic techniques in the sterile OT environment

7. Emergency & Trauma Radiography

- Principles of radiography in casualty settings
- Spinal injury precautions
- Bedside radiography for critically ill patients
- Portable chest and limb radiography

8. Pediatric Radiography

- Patient handling and immobilization for infants and children
- Radiation protection in pediatric imaging
- Common pediatric radiographic exams

9. Geriatric Radiography

- Patient positioning challenges in elderly patients
- Adjustments in exposure for osteoporosis & degenerative changes
- Fall-risk management during procedures

10. Quality Control & Image Evaluation

- Identifying positioning errors
- Film faults and retake minimization
- Quality control tests in radiography
- Record keeping & PACS image management

11. Radiation Protection in Clinical Practice

- ALARA principle
- Protective devices and lead barriers

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.ggmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Radiation monitoring for staff
- Safe exposure practices for pregnant patients

12. Professional & Ethical Considerations

- Patient confidentiality & informed consent
- Communication skills in clinical radiography
- Legal aspects of radiographic practice

PRACTICAL

Patient Preparation & Positioning

- Identifying the patient & verifying requisition forms
- Explaining the procedure to the patient
- Removing artifacts (jewelry, belts, clothing with metal)
- Positioning the patient according to anatomical planes:
 - o Sagittal, coronal, transverse planes identification
 - Use of immobilization devices
- Practicing correct centering & collimation

Radiographic Positioning – Skeletal System

Upper Limb

- AP & lateral views: hand, wrist, forearm, elbow, humerus
- Shoulder girdle: AP, lateral, axial views
- Clavicle: AP & axial
- Scapula: AP & lateral

Lower Limb

- AP & lateral views: foot, ankle, tibia-fibula, knee
- Special knee projections: skyline, tunnel
- Femur: AP & lateral
- Pelvis & hip joints: AP pelvis, lateral hip

Spine

- Cervical spine: AP, lateral, oblique
- Thoracic spine: AP & lateral
- Lumbar spine: AP, lateral, oblique
- Sacrum & coccyx

Chest & Thorax

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Chest PA & lateral
- Special views: lordotic, decubitus
- Sternum, ribs: AP/PA & oblique

Skull & Facial Bones

- Skull: AP, lateral, Towne's, Water's, Caldwell's
- Facial bones: PA, lateral
- Sinuses: Water's, Caldwell's, lateral
- Mandible: AP, oblique, panoramic (if facility available)

Contrast Study Procedures (Observation & Participation)

Gastrointestinal Tract

- o Barium swallow
- o Barium meal
- o Barium follow-through
- o Barium enema

Urinary System

- Intravenous urography (IVU)
- Micturating cystourethrogram (MCU)
- Retrograde urethrogram (RGU)

• Other Special Procedures

- Hysterosalpingography (HSG)
- Myelography
- Arthrography
- Sialography

> Mobile & Portable Radiography

- Bedside chest radiography in ICU
- Bedside limb X-rays for trauma patients
- Handling & positioning in restricted spaces
- Mobile unit safety protocols

Operation Theatre (OT) Radiography

- Use of **C-arm fluoroscopy**
- Orthopedic OT imaging during fracture fixation
- Sterile handling of equipment & accessories
- Radiation protection for surgical team

Pediatric & Geriatric Imaging

- Patient immobilization methods for infants & children
- Special considerations in elderly patient handling

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

• Dose adjustment for pediatric & geriatric cases

Image Evaluation & Fault Analysis

- Identifying correct positioning vs. common errors
- Checking image quality (density, contrast, sharpness)
- Recognizing motion blur, artifacts, and improper exposure
- Suggesting corrections and retake protocols

Radiation Safety Practical

- Use of lead aprons, thyroid shields, lead gloves
- Correct collimation & beam restriction
- Use of personal dosimeter (TLD badge)
- Safe positioning during exposure

> Logbook & Case Documentation

- Maintaining a **practical logbook** with:
 - Date
 - Patient ID (coded)
 - Exam type & projection taken
 - o Exposure parameters used
 - Remarks on image quality
- Weekly evaluation by faculty/supervisor

Departmental Workflow & PACS

- Registering patient details in RIS/PACS
- Retrieving and reviewing previous images
- Sending completed studies to reporting radiologist
- Printing or archiving images as per protocol

RADIATION PATHOLOGY

THEORY

1. Introduction to Pathology

- Definition & scope of pathology
- General principles of disease processes
- Cellular responses to injury:
 - Cell injury (reversible & irreversible)
 - Cell death (necrosis, apoptosis)
 - o Cellular adaptations (hypertrophy, hyperplasia, atrophy, metaplasia)

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.ggmail.com/

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

2. Inflammation & Repair

- Acute inflammation: causes, vascular & cellular events
- Chronic inflammation: causes, granulomatous inflammation
- Chemical mediators of inflammation
- Healing & repair:
 - o Regeneration & fibrosis
 - o Factors influencing wound healing

3. Neoplasia

- Definition, classification of tumors (benign vs malignant)
- Characteristics & behavior of tumors
- Etiology of cancer: genetic & environmental factors
- Metastasis & modes of spread
- Tumor grading & staging
- Common cancers relevant to radiology:
 - Lung
 - o Breast
 - Cervix
 - Prostate
 - Bone tumors

4. Basic Concepts of Radiation Pathology

- Interaction of ionizing radiation with living tissue
- Determinants of radiation injury:
 - o Type & energy of radiation
 - Total dose & dose rate
 - Area of exposure
 - Oxygen effect
 - o Radiosensitivity of tissues (Law of Bergonie & Tribondeau)

5. Radiation Effects at Cellular & Molecular Level

- DNA damage: single & double strand breaks, cross-linking, base alterations
- Chromosomal aberrations
- Radiation effects on cell cycle
- Mechanisms of repair after radiation injury

6. Acute Radiation Syndrome (ARS)

- Hematopoietic syndrome
- Gastrointestinal syndrome
- Neurovascular syndrome
- Stages of ARS: prodromal, latent, manifest illness, recovery/death

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

• Clinical features & management principles

7. Deterministic & Stochastic Effects

- Deterministic (threshold) effects:
 - o Skin erythema, desquamation, epilation
 - Cataracts
 - Sterility
- Stochastic (probabilistic) effects:
 - Carcinogenesis
 - o Genetic mutations

8. Radiation Effects on Specific Organ Systems

- Skin & appendages
- Blood & bone marrow
- Gastrointestinal tract
- Lungs
- Liver & kidneys
- Endocrine glands
- Eye (lens)
- Nervous system
- Reproductive system

9. Fetal & Developmental Effects of Radiation

- Radiation hazards during pregnancy
- Stages of embryonic/fetal radiosensitivity
- Possible effects: growth retardation, congenital malformations, mental retardation, carcinogenesis

10. Late Effects of Radiation

- Fibrosis
- Organ atrophy
- Vascular damage
- Radiation-induced malignancies

11. Radiation Pathology in Therapeutic Context

- Pathological changes in tissues post-radiotherapy
- Tolerance doses of organs
- Management of radiation-induced injuries in cancer patients

12. Radiation Protection Principles in Pathology

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Justification, optimization, dose limitation
- ALARA principle
- Protective devices & shielding
- Use of personal dosimeters

PRACTICAL

> Introduction to Pathology Laboratory Practices

- Familiarization with pathology lab equipment
- Safety rules for handling biological specimens & slides
- Preparation of histopathology slides (overview)

Microscopy & Slide Observation

- Use of light microscope
- Identification of normal histological features of key organs (skin, liver, lung, kidney, bone marrow, etc.)
- Observation of pathological changes under microscope

Demonstration of Cellular Changes

- Microscopic slides showing:
 - o Reversible cell injury
 - Necrosis types (coagulative, liquefactive, caseous, fat)
 - Apoptosis
 - o Cellular adaptations (hypertrophy, atrophy, hyperplasia, metaplasia)

> Inflammation & Repair

- Slides & gross specimens of acute inflammation (appendicitis, abscess)
- Slides of chronic inflammation (tuberculosis, granulomas)
- Demonstration of wound healing stages

> Tumor Pathology

- Slides & gross specimens of benign tumors (e.g., lipoma, adenoma)
- Slides of malignant tumors (e.g., squamous cell carcinoma, adenocarcinoma)
- Observation of tumor grading & staging patterns
- X-ray / CT / MRI images showing tumor masses

> Radiation Effects on Cells & Tissues

- Microscopic & gross specimens of radiation injury to:
 - Skin (erythema, ulceration)
 - Bone marrow (hypoplasia/aplasia)

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- GI mucosa (mucosal denudation)
- Lens (radiation cataract changes)
- Case photographs/images of radiation burns

Acute Radiation Syndrome (ARS) Demonstration

- Charting ARS stages with symptoms
- Case discussions based on past medical records
- Observation of hematology reports showing radiation-induced changes (CBC patterns)

Organ-Specific Radiation Pathology

- Slides or images showing:
 - o Lung fibrosis post-radiation
 - o Liver cirrhosis due to radiation
 - Kidney damage (radiation nephropathy)
 - Thyroid gland changes post-radiation
- Radiological images highlighting these changes

Fetal Radiation Effects

 Demonstration through charts, diagrams, and documented case studies of prenatal radiation exposure outcomes

Late Effects & Secondary Cancers

- Case images or reports showing:
 - Radiation-induced leukemia
 - Solid tumors following radiation therapy
- Discussion of latency periods & dose correlation

Radiation Protection Demonstrations

- Use of personal dosimeters (TLD, film badge) in pathology/radiology labs
- Demonstration of lead barriers & shielding in work areas
- ALARA implementation in pathology imaging work

Record Keeping & Case Documentation

- Maintaining a radiation pathology practical record book
- Documenting slide observations & image interpretations
- Preparing short case summaries

RADIATION THERAPY MACHINES

THEORY

1. Introduction to Radiation Therapy Machines

- Evolution of radiation therapy equipment
- Classification of radiation therapy machines (kilovoltage, megavoltage, superficial, orthovoltage, teletherapy, brachytherapy)
- General requirements for a radiotherapy unit

2. Basic Principles of Radiation Production

- Physics of X-ray & gamma-ray production
- Bremsstrahlung & characteristic radiation
- Radioactive decay principles for therapy sources (Co-60, Cs-137, Ir-192)
- Linear accelerator beam production

3. Superficial & Orthovoltage Therapy Units

- Structure and components
- Energy range & beam characteristics
- Applications and limitations
- Patient positioning & safety

4. Teletherapy Machines

• Cobalt-60 Teletherapy Unit

- Construction & working
- Source characteristics and replacement
- Beam collimation systems
- Safety features

Linear Accelerator (LINAC)

- o Components: electron gun, waveguide, accelerator structure, target
- Modes of operation (photon mode, electron mode)
- o Beam flattening filters & multi-leaf collimators (MLC)
- o Image-guided radiotherapy (IGRT) integration

5. Brachytherapy Units

- Types of brachytherapy: low dose rate (LDR), high dose rate (HDR), pulsed dose rate (PDR)
- Remote afterloading machines
- Common sources: Ir-192, Cs-137, Co-60, I-125
- Applicators & treatment techniques

6. Simulator Units

- X-ray simulator structure & working
- CT simulator principles & advantages
- Role in treatment planning

7. Specialized Radiation Therapy Machines

- Stereotactic radiosurgery (SRS) units: Gamma Knife, CyberKnife
- Proton therapy machines (cyclotron, synchrotron)
- Tomotherapy
- Intraoperative radiotherapy systems (IORT)

8. Beam Modifying Devices

- Wedges, bolus, compensators, blocks, MLC
- Electron applicators & cones
- Patient immobilization devices

9. Quality Assurance (QA) of Radiation Therapy Machines

- Daily, weekly, monthly, annual QA tests for LINAC & Cobalt units
- Dosimetry checks
- Safety interlock verification

10. Radiation Safety & Regulatory Requirements

- AERB / IAEA guidelines for installation & operation
- Radiation monitoring devices (survey meter, area monitor, personal dosimeter)
- Emergency procedures for source leakage or malfunction

11. Maintenance & Troubleshooting

- Routine maintenance schedules
- Common mechanical & electrical faults
- Reporting and logging maintenance activities

12. Recent Advances in Radiation Therapy Equipment

- Volumetric modulated arc therapy (VMAT)
- Intensity modulated radiotherapy (IMRT) delivery systems
- Adaptive radiotherapy machines
- Artificial intelligence integration in radiotherapy machines

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

PRACTICAL

> Familiarization & Demonstration

- Identification of different radiation therapy machines (Cobalt-60, LINAC, Brachytherapy units, Simulators)
- Demonstration of basic machine components and control panels
- Orientation to treatment room layout and safety zones

> Machine Start-Up & Shutdown Procedures

- Pre-use checks for LINAC and Cobalt units
- Power ON/OFF sequence and warm-up procedures
- Emergency shutdown protocols

Cobalt-60 Teletherapy Unit Practical

- Source ON/OFF demonstration
- Collimator movement and field size selection
- Gantry and couch movement controls
- Safety interlock demonstration

▶ Linear Accelerator (LINAC) Practical

- Mode selection: photon and electron beams
- Energy level selection and verification
- Multileaf collimator (MLC) operations
- Beam shaping and field setup
- Daily output check procedure

Brachytherapy Equipment Practical

- Handling and loading applicators (LDR/HDR)
- Remote afterloading system demonstration
- Radiation source storage and transfer
- QA of brachytherapy afterloader

Simulator & CT Simulator Practical

- Patient positioning for simulation
- Marking of isocentre and reference points
- Imaging acquisition and transfer to treatment planning system
- Immobilization device usage

Beam Modifying Devices Handling

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Placement of wedges, bolus, compensators
- Field block cutting and positioning
- Electron applicator attachment

Quality Assurance (QA) Practical

- Daily machine QA checks (output, field symmetry, flatness)
- Monthly QA demonstration (mechanical accuracy, beam energy)
- Annual QA overview
- Use of QA tools: ionization chamber, electrometer, water phantom

Radiation Safety & Monitoring

- Use of survey meter and area monitor
- Checking personal dosimeter (TLD/OSL) readings
- Room radiation level measurement during operation
- Safe handling and storage of radioactive sources

> Maintenance Demonstration

- Routine cleaning and inspection procedures
- Lubrication of moving parts (where applicable)
- Basic troubleshooting steps for common errors

Emergency Drills

- Source stuck in ON position simulated response
- Power failure during treatment safe patient removal procedure
- Equipment fault reporting and documentation

> Record-Keeping & Documentation

- Treatment logbook entry
- QA test documentation
- Radiation safety records and incident reporting

RADIOGRAPHY AND IMAGING TECHNIQUES

THEORY

1. Introduction to Radiography

- Definition, scope, and role of radiography in medical diagnosis and treatment
- Historical development of radiographic techniques
- Types of radiographic imaging (diagnostic vs. therapeutic imaging)
- Basic principles of image formation

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com

2. Radiation Physics for Imaging

- Interaction of X-rays and gamma rays with matter
- Factors affecting image quality: density, contrast, sharpness, distortion
- Inverse square law and its application in radiography
- Radiation attenuation and beam quality

3. Radiographic Equipment & Accessories

- X-ray tube construction and working
- Control console functions
- Image receptors: film-screen systems, computed radiography (CR), digital radiography (DR)
- Grids and collimators
- Intensifying screens
- Cassettes and holders

4. Patient Positioning & Immobilization

- Anatomical positioning terminology
- General positioning rules for different examinations
- Use of positioning aids and immobilization devices
- Importance of proper positioning in image quality and radiation protection

5. Radiographic Techniques for Skeletal System

- Radiography of upper and lower limbs
- Skull and facial bone radiography
- Spine radiography (cervical, thoracic, lumbar)
- Pelvis and hip radiography

6. Radiographic Techniques for Chest & Thorax

- PA and lateral chest projections
- Special chest views (lordotic, decubitus)
- Radiography for ribs, sternum, clavicle

7. Radiographic Techniques for Abdomen & Pelvis

- Plain abdominal radiography
- Contrast studies for abdomen (Barium meal, follow-through, enema)
- Pelvic imaging with and without contrast

8. Contrast Media & Special Procedures

Types of contrast agents (positive and negative)

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Preparation of patient for contrast studies
- Indications and contraindications of contrast use
- Special imaging procedures:
 - Intravenous pyelography (IVP)
 - Hysterosalpingography (HSG)
 - Myelography
 - Angiography (basic concepts)

9. Cross-Sectional Imaging Techniques

- Basic principles of CT, MRI, Ultrasound
- Advantages, limitations, and applications in radiotherapy planning
- Imaging protocols for tumor localization

10. Radiographic Image Evaluation

- Common radiographic faults and corrective measures
- Identification of anatomical landmarks in images
- Criteria for acceptable diagnostic image quality

11. Radiation Protection in Imaging

- ALARA principle
- Shielding for patients and staff
- Dose limits for occupational workers and public
- Use of personal dosimeters

12. Film Processing & Digital Image Processing

- Darkroom layout and design
- Film processing steps and chemicals
- CR and DR image acquisition
- Digital image storage (PACS) and retrieval

13. Quality Assurance in Imaging

- Equipment calibration and maintenance
- Image quality control tests
- Documentation and record-keeping

PRACTICAL

Orientation & Safety

• Demonstration of departmental layout and workflow in diagnostic & therapeutic imaging units

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil@gmail.com

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Familiarization with X-ray, CT, MRI, Ultrasound, and Radiotherapy machines
- Demonstration of radiation safety measures:
 - Use of lead aprons, thyroid shields, gonad shields
 - Room shielding awareness
 - Proper handling of personal dosimeters

Patient Preparation & Communication

- Introducing self and explaining procedure to patient
- Verification of patient identity and consent taking
- Preparation for various imaging procedures (fasting, contrast use, gowning)
- Immobilization techniques for cooperative and uncooperative patients

Equipment Handling

- Switching on/off and warming up X-ray equipment
- Selection of appropriate exposure factors (kVp, mA, exposure time)
- Collimator adjustment and centering
- Cassette handling (CR/DR systems) and plate loading

Basic Radiographic Positioning

- Upper limb: fingers, hand, wrist, forearm, elbow, humerus, shoulder
- **Lower limb**: toes, foot, ankle, tibia-fibula, knee, femur, hip joint
- Chest: PA, lateral, lordotic views
- Skull: AP, lateral, Towne's, Waters' view
- Spine: cervical, thoracic, lumbar, sacrum, coccyx

> Abdominal & Pelvic Radiography

- Plain abdomen AP view
- Special projections for urinary tract studies (e.g., IVP series)
- Pelvic AP view and special views for hip joints

Contrast Study Procedures

- Assisting in barium swallow, barium meal, barium enema
- Assisting in hysterosalpingography (HSG) and myelography
- Preparation and safe handling of contrast media
- Patient monitoring during and after contrast injection

Cross-Sectional Imaging (Observation & Assistance)

- Patient positioning in **CT scan** for head, chest, abdomen, pelvis
- Basics of MRI patient preparation and coil placement

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

• Observation of ultrasound patient positioning and probe handling (for understanding anatomy & localization)

> Image Processing

- **Conventional film processing**: developing, fixing, washing, drying
- **CR/DR processing**: image acquisition, post-processing adjustments, and storage
- PACS usage for image retrieval and transfer

> Image Quality Assessment

- Identifying positioning errors and exposure faults
- Comparing good vs. poor quality radiographs
- Marking anatomical landmarks on films

> 10. Quality Control (QC) & Maintenance

- Daily equipment checks (tube warm-up, detector calibration)
- Cleaning and care of imaging accessories
- Test exposures for checking equipment performance
- Record keeping for QC activities

Clinical Posting Log Book

- Maintaining a **practical record book/log book** with:
 - Date & procedure performed/assisted
 - Patient preparation notes
 - Positioning and exposure details
 - Observations and remarks by supervisor

SEMESTER - III

PAPER	SUBJECT NAME	THEORY	PRACTICAL	THEORY	PRACTICAL
CODE		HOURS	HOURS	MARKS	MARKS
DMRIT301	PREVENTIVE	45 Min	1 Hrs.	50	50
	MEDICINE AND				
	MEDICAL ETHICS				
DMRIT302	DARK ROOM	45 Min	1 Hrs.	50	50
	TECHNIQUE				
DMRIT303	CONVENTIONAL	45 Min	1 Hrs.	50	50
	RADIOGRAPHY &				
	EQUIPMENT				
DMRIT304	ADVANCED	45 Min	1 Hrs.	50	50
	IMAGING				
	MODALITIES (CR,				
	DIGITAL, CT, MRI)				

Web: https://paramedicaleducationcouncil@gmail.com/ Email id: paramedicaleducationcouncil@gmail.com/

PREVENTIVE MEDICINE AND MEDICAL ETHICS

THEORY

1. Introduction to Preventive Medicine

- Definition, scope, and importance of preventive medicine in healthcare
- Natural history of disease & levels of prevention (primordial, primary, secondary, tertiary)
- Concepts of health and disease
- Determinants of health physical, mental, social, and environmental

2. Epidemiology

- Definition, aims, uses, and basic principles
- Types of epidemiological studies (descriptive, analytical, experimental)
- Measures of disease frequency: incidence, prevalence, morbidity, mortality
- Surveillance and notification of diseases

3. Communicable Diseases

- Modes of transmission and prevention of:
 - Tuberculosis
 - Hepatitis B & C
 - o HIV/AIDS
 - o COVID-19
 - o Typhoid, cholera, malaria
- Universal precautions for infection control in healthcare settings

4. Non-Communicable Diseases (NCDs)

- Common NCDs: cardiovascular diseases, diabetes, cancer, stroke
- Risk factors, screening, and preventive strategies
- Role of lifestyle modification and patient education

5. Environmental Health

- Safe water supply and sanitation
- Waste disposal (including biomedical waste management in radiology departments)
- Hospital infection control
- Radiation hazards and protection measures

6. Immunization

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Immunization schedules (national & special vaccines)
- Cold chain maintenance
- Post-exposure prophylaxis for healthcare workers (e.g., Hepatitis B, rabies)

7. Occupational Health

- Occupational hazards in radiology:
 - Radiation exposure
 - Musculoskeletal strain
 - Stress and fatigue
- Safety guidelines & use of personal protective equipment (PPE)
- Periodic health checkups for radiology staff

Medical Ethics

8. Introduction to Medical Ethics

- Definition and importance of ethics in healthcare
- Difference between ethics, morals, and laws
- Principles of biomedical ethics:
 - Autonomy
 - Beneficence
 - Non-maleficence
 - Justice

9. Patient Rights & Responsibilities

- Patient confidentiality and privacy (including imaging records)
- Informed consent purpose, types, and legal aspects
- Right to information and refusal of treatment

10. Professional Conduct

- Code of conduct for radiology professionals
- Maintaining dignity and respect towards patients
- Avoiding discrimination based on gender, religion, caste, or economic status
- Truthfulness and transparency in reporting

11. Legal Aspects in Radiology

- Relevant acts and laws:
 - o PCPNDT Act (Prohibition of Sex Selection)
 - o Atomic Energy Regulatory Board (AERB) guidelines
 - o Consumer Protection Act in healthcare
- Medicolegal documentation in imaging

12. Ethical Issues in Radiology

- Handling incidental findings
- Ethical concerns with AI and digital image manipulation
- · Reporting errors and accountability
- Conflict of interest in medical practice

13. Communication Skills

- Communicating with patients empathetically
- Breaking bad news sensitively
- Interpersonal skills with colleagues and other healthcare workers

PRACTICAL

Infection Control & Universal Precautions

- Demonstration of **hand hygiene techniques** (WHO 7-step method)
- Proper use and disposal of personal protective equipment (PPE) gloves, masks, gowns, lead aprons
- Safe handling and disposal of contaminated materials in radiology departments
- Needle stick injury prevention and post-exposure protocol

Biomedical Waste Management

- Segregation of biomedical waste according to color-coded bins
- Handling of **radiographic films** and chemicals safely
- Proper disposal of expired contrast media and radioactive materials as per AERB guidelines

> Immunization & Post-Exposure Prophylaxis

- Observation of vaccination procedures in healthcare facilities
- Demonstration of maintaining **cold chain** for vaccines
- Preparation of a checklist for post-exposure prophylaxis for Hepatitis B, HIV, and rabies

Hospital Infection Control Practices

- Visit to the hospital infection control unit
- Preparation of a radiology-specific infection control plan
- Demonstration of equipment cleaning and disinfection protocols (e.g., ultrasound probes, X-ray cassettes, CT gantry)

Radiation Protection Measures

- Demonstration of use of **radiation monitoring devices** (TLD badge, pocket dosimeter)
- Checking and proper positioning of lead barriers, lead glass, and lead aprons
- Mock drill on safe evacuation during a radiation hazard

> Screening & Preventive Health Measures

- Participation in community health camps for **NCD screening** (BP, blood sugar, cancer awareness)
- Observation of preventive imaging techniques (e.g., mammography for breast cancer screening)

> Patient Interaction & Ethical Practice

- Role-play exercises on **informed consent** taking for imaging procedures
- Simulated patient counseling for:
 - Radiation safety
 - Procedure explanation
 - Contrast media risks
- Practicing **empathetic communication** and active listening skills

> Legal & Ethical Documentation

- Preparation of sample consent forms for X-ray, CT, MRI, and radiation therapy
- Mock documentation of PCPNDT records for ultrasound procedures
- Understanding confidentiality: practice scenarios of maintaining patient data security

Case Studies & Ethical Dilemmas

- Group discussion on real-life ethical issues in radiology (e.g., incidental findings, patient privacy, error reporting)
- Problem-solving activities for ethical conflicts in imaging practice

> Professionalism in the Radiology Department

- Observing and noting professional behavior of radiographers and technologists
- Practicing teamwork and coordination with other healthcare professionals

DARK ROOM TECHNIQUE

THEORY

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.com/

1. Introduction to Dark Room

- Purpose and importance of the dark room in radiography
- Types of dark rooms: Conventional, Daylight, and Digital Radiography processing areas
- Layout and design considerations:
 - Size and shape
 - Location (proximity to X-ray room)
 - Light-proofing requirements

2. Illumination in the Dark Room

- Types of lighting: White light and safe light
- Safe light filters types, specifications, and distances from work area
- Effect of improper lighting on films
- Maintenance of illumination systems

3. Construction & Environmental Conditions

- Wall, floor, and ceiling finishes for easy cleaning and light-proofing
- Ventilation and temperature control
- Humidity control and its effect on film handling
- Safety precautions for chemical handling

4. Film Types & Handling

- Structure and composition of X-ray films
- Types of radiographic films: screen films, non-screen films, specialty films
- Film storage:
 - Storage conditions
 - Shelf life and expiry
- Film fogging causes and prevention

5. Intensifying Screens & Cassettes

- Purpose and types of intensifying screens
- Screen care and cleaning
- Cassette types: metal, plastic, flexible, and daylight cassettes
- Loading and unloading of cassettes

6. Film Processing Methods

Manual Processing:

- o Processing cycle: Developing, rinsing, fixing, washing, drying
- o Time-temperature relationship
- Common processing faults and remedies

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

Automatic Processing:

- o Components and functioning of automatic film processors
- Maintenance and troubleshooting

7. Processing Chemicals

- Developer solution: composition, preparation, function of each component
- Fixer solution: composition, preparation, function of each component
- Chemical storage and handling precautions
- Replenishment rates and disposal of used chemicals

8. Processing Defects

- Identification of common film faults:
 - Chemical stains
 - Reticulation
 - Fogging
 - Incomplete fixing/washing
- Causes and prevention

9. Quality Control in Dark Room

- Sensitometry and densitometry basics
- Control strips and step wedge testing
- Preventive maintenance schedules for processors and equipment

10. Transition to Digital Imaging

- Digital imaging workflow vs. darkroom workflow
- CR (Computed Radiography) cassettes and image plates
- Cleaning and maintenance of CR/DR systems
- Disposal of conventional darkroom materials in digital era

PRACTICAL

Dark Room Orientation

- Identification of dark room layout (wet side & dry side)
- Checking for light leaks using coin test or visual inspection
- Demonstrating safe entry and exit without light leakage

> Illumination & Safe Light Testing

- Setting up safe light with correct filter and distance
- Performing safe light fog test
- Recording and interpreting results

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

Adjusting safe light intensity to avoid film fogging

> Film Handling Skills

- Loading and unloading of X-ray films in cassettes under safe light
- Handling unexposed and exposed films to prevent scratches or fingerprints
- Proper storage of unused and exposed films

Intensifying Screens & Cassettes

- Cleaning and inspecting intensifying screens
- Checking cassette closure and light tightness
- Loading screens with correct film size
- Testing for screen-film contact

Manual Film Processing

- Preparation of developer and fixer solutions as per formula
- Setting correct temperature for developer
- Step-by-step manual processing:
 - 1. Developing (with agitation)
 - 2. Rinsing
 - 3. Fixing
 - 4. Washing
 - 5. Drying
- Using a thermometer and timer for temperature-time control
- Recording chemical preparation date and replenishment

Automatic Film Processing

- Loading films into automatic processor
- Checking chemical levels and replenishment rates
- Cleaning rollers and racks of processor
- Performing routine maintenance as per schedule

Film Processing Fault Identification

- Preparing intentional fault films for learning:
 - Underdevelopment
 - Overdevelopment
 - Chemical contamination
 - Light fogging
- Analyzing the cause of each defect and demonstrating prevention

Quality Control Procedures

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Using sensitometer to expose control strips
- Processing control strips and measuring density with densitometer
- Plotting results on a QC chart and interpreting deviations
- Calibrating processor settings based on QC results

> Dark Room Hygiene & Safety

- Wearing gloves and protective aprons while handling chemicals
- Safe disposal of exhausted developer and fixer
- Ventilation check and air quality monitoring
- Cleaning work surfaces after processing

> Transition to Digital

- Loading and unloading CR (Computed Radiography) cassettes
- Cleaning image plates with approved wipes
- Performing erasure cycles in CR systems
- Comparing CR/DR workflow with traditional darkroom workflow

CONVENTIONAL RADIOGRAPHY & EQUIPMENT

THEORY

1. Introduction to Conventional Radiography

- Definition and scope of conventional radiography
- Historical development of X-ray imaging
- Applications in diagnostic radiology

2. X-ray Production & Properties

- Physics of X-ray production
- X-ray tube construction and working principle
- Types of X-ray tubes (stationary & rotating anode)
- Properties of X-rays (physical, chemical, and biological)

3. Components of Conventional X-ray Equipment

- **Control panel**: kVp, mA, exposure time controls
- **X-ray tube head**: tube housing, collimator, filtration
- Table & Bucky: fixed, floating, vertical, and horizontal movements
- Cassette & screen: types, structure, and use

4. Beam Restriction & Filtration

• Purpose and types of collimators (manual, automatic)

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Inherent and added filtration
- · Effects on patient dose and image quality

5. Grids

- Purpose of using grids in radiography
- Types of grids (stationary, moving, focused, parallel, cross-hatched)
- Grid ratio and grid cutoff
- Advantages and limitations

6. Image Receptors

- Screen-film system: types and characteristics
- Intensifying screens: principle and phosphor materials
- Film structure, speed, and sensitivity
- Screen-film contact and testing

7. Exposure Factors & Image Quality

- Relationship between kVp, mA, exposure time, and film density
- Influence on image contrast, sharpness, and resolution
- Reciprocity law
- Factors affecting magnification and distortion

8. Patient Positioning for Common Examinations

- Chest, abdomen, skull, spine, extremities
- AP. PA. lateral, and oblique views
- Use of immobilization aids

9. Radiation Protection & Safety

- ALARA principle in conventional radiography
- Use of lead aprons, thyroid shields, gonadal shields
- Safe operating distances and protective barriers
- Role of radiation warning signs and lights

10. Quality Control in Conventional Radiography

- Periodic equipment performance checks
- Timer accuracy, reproducibility, and linearity tests
- Light field-radiation field alignment check
- Screen cleaning and cassette inspection

11. Maintenance of Conventional X-ray Equipment

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Routine preventive maintenance
- Common faults and troubleshooting
- Importance of proper handling and storage of equipment

12. Integration with Darkroom & Film Processing

- Safe handling of exposed films
- Transport to darkroom
- Basic overview of film development and processing defects

PRACTICAL

Orientation to X-ray Room & Safety

- Identification of X-ray machine components (tube, collimator, control panel, Bucky, table, grid)
- Positioning of control console and cables for safe workflow
- Checking radiation warning signs and indicators
- Demonstrating safe working distance and protective barriers

> Control Panel Operation

- Setting kVp, mA, and exposure time correctly
- Use of exposure charts for different examinations
- Selecting correct focal spot size for imaging requirements
- Testing exposure switch functionality

> Tube Head & Collimator Handling

- Adjusting tube height, angle, and centering
- Aligning tube with table and Bucky
- Collimator light field adjustment and centering check
- Testing light field-radiation field congruence

Patient Positioning Techniques

(Performed on phantom or volunteer under supervision)

- AP, PA, lateral, and oblique positions for chest, skull, spine, extremities, abdomen
- Correct alignment of patient, tube, and cassette
- Use of positioning aids (sponges, straps)

Film-Screen & Cassette Handling

- Loading and unloading cassettes in daylight and darkroom
- Selecting correct film size for each examination

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

Checking screen-film contact and cassette light tightness

Grid Usage & Testing

- Placing and centering stationary or moving grids
- Testing grid alignment and functionality
- Demonstrating the effect of grid cutoff and prevention

Quality Control in Conventional Radiography

- Reproducibility of exposure test
- Timer accuracy check using spinning top test
- Focal spot size evaluation (pinhole camera method)
- · Linearity and reciprocity law testing

Accessories & Immobilization

- Using lead aprons, thyroid shields, gonadal shields
- Handling sandbags, compression bands, and immobilizers
- Demonstrating correct placement of markers (L/R)

> Darkroom Integration

- Transporting exposed cassettes safely to darkroom
- Processing films as per darkroom SOP (manual or automatic)
- Evaluating processed films for correct density and contrast

Basic Maintenance & Safety Checks

- Cleaning and dusting tube housing, collimator lenses, and control panel
- Checking earthing and cable insulation
- Reporting faults and scheduling preventive maintenance

ADVANCED IMAGING MODALITIES (CR, DIGITAL, CT, MRI)

THEORY

1. Introduction to Advanced Imaging

- Evolution from conventional radiography to CR, DR, CT, and MRI
- Advantages & limitations of each modality
- Overview of PACS (Picture Archiving & Communication System) integration

2. Computed Radiography (CR)

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

2.1 Principle & Technology

- Photostimulable phosphor (PSP) technology
- CR cassette construction and working
- Image plate reader system
- Latent image formation and processing steps

2.2 Image Acquisition & Processing

- Workflow of CR imaging
- Image resolution, spatial frequency, and bit depth
- Artifacts in CR and their correction

2.3 Quality Control & Maintenance

- PSP plate cleaning and erasing
- · Routine calibration and performance checks

3. Digital Radiography (DR)

3.1 Principle & Technology

- Flat panel detectors (FPD): indirect & direct conversion
- Scintillator materials and photodiodes
- CCD-based systems

3.2 Image Acquisition & Processing

- DR workflow compared to CR
- Advantages in dose efficiency and speed
- Digital image post-processing (windowing, filtering, edge enhancement)

3.3 Quality Assurance

- Detector calibration
- Common DR artifacts and troubleshooting

4. Computed Tomography (CT)

4.1 Basic Principles

- Evolution of CT scanner generations (1st-7th)
- X-ray tube and detector design for CT
- Helical/spiral CT vs. conventional CT

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

4.2 Image Reconstruction

- Slice thickness and pitch
- Reconstruction algorithms (filtered back projection, iterative reconstruction)
- Hounsfield units and CT number scale

4.3 CT Imaging Protocols

- Head, chest, abdomen, musculoskeletal CT protocols
- Contrast media usage (oral, IV) and precautions

4.4 CT Image Quality & Artifacts

- Factors affecting spatial resolution, contrast, and noise
- Common artifacts (beam hardening, motion, metal)

4.5 Radiation Safety in CT

- Dose reduction techniques (automatic exposure control, tube current modulation)
- CT dose index (CTDI) and dose-length product (DLP)

5. Magnetic Resonance Imaging (MRI)

5.1 Basic Physics of MRI

- Concept of nuclear magnetic resonance (NMR)
- Magnetic field strength (Tesla units)
- Role of hydrogen nuclei in imaging

5.2 MRI Components

- Main magnet (superconducting, resistive, permanent)
- Gradient coils and RF coils
- · Shielding and room design

5.3 Image Formation

- T1, T2, and proton density (PD) weighted imaging
- Spin echo, gradient echo, FLAIR, and diffusion sequences
- Slice selection, phase encoding, and frequency encoding

5.4 MRI Protocols

- Brain, spine, musculoskeletal, abdominal, and cardiac MRI protocols
- Use of gadolinium-based contrast agents and safety considerations

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

5.5 MRI Safety

- Magnetic field hazards and screening
- SAR (Specific Absorption Rate) monitoring
- MRI-compatible devices and patient preparation

6. Digital Image Processing & PACS

- Image storage formats (DICOM)
- PACS architecture and workflow
- Teleradiology basics
- Data compression and retrieval

7. Quality Control in Advanced Imaging

- Daily, weekly, and monthly QC checks for CR, DR, CT, MRI
- Preventive maintenance schedules
- Image quality assessment tools

8. Recent Advances & Trends

- Dual-energy CT
- 3D/4D imaging in CT and MRI
- Functional MRI (fMRI) and MR spectroscopy
- AI-assisted image interpretation

PRACTICAL

Computed Radiography (CR) - Practical

Demonstration & Identification

- o Parts of a CR system: cassette, image plate (IP), reader unit
- PSP plate handling & storage

• Image Acquisition

- Loading/unloading CR cassettes
- Positioning for standard projections using CR
- o Correct exposure factor selection for optimal image quality

Image Processing

- Workflow from exposure to display
- Use of console for brightness, contrast, and windowing adjustments

Quality Control (QC)

- Image plate cleaning and erasing
- Checking for CR artifacts (scratches, dust, ghosting)

Digital Radiography (DR) - Practical

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

• Demonstration & Identification

- Flat panel detector types (direct & indirect)
- Detector handling precautions

• Patient Positioning & Exposure

- DR imaging for chest, abdomen, extremities
- Exposure parameter selection for DR

Image Processing & Manipulation

- Real-time image display and post-processing tools
- o Cropping, annotation, and measurement tools

QC & Maintenance

- o Detector calibration
- Recognizing and correcting DR artifacts

Computed Tomography (CT) - Practical

Equipment Familiarization

- o CT gantry, control console, injector system
- Safety interlocks and patient communication system

• Patient Preparation

- Screening and consent
- IV cannulation for contrast administration
- Oral contrast preparation protocols

Positioning & Scanning Protocols

- Head CT (plain & contrast)
- Chest CT (HRCT, CECT)
- Abdomen and pelvis CT
- Musculoskeletal CT

Image Reconstruction & Post-Processing

- MPR (Multi-Planar Reconstruction)
- 3D rendering & volume rendering techniques

OC in CT

- Daily warm-up and calibration
- Water phantom scan for HU accuracy check

Magnetic Resonance Imaging (MRI) - Practical

MRI Equipment Familiarization

- o Main magnet, gradient coils, RF coils, patient table
- MRI control console and safety zones

Patient Preparation

- MRI safety screening (metallic implants, pacemakers)
- o Patient positioning for brain, spine, joints, abdomen
- Coil selection for different body parts

• MRI Protocol Execution

- o Brain MRI (T1, T2, FLAIR, DWI sequences)
- Spine MRI (cervical, thoracic, lumbar)

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Joint MRI (knee, shoulder)
- Abdominal MRI

• Contrast Administration

- o Gadolinium contrast preparation & safety precautions
- Image Processing & Post-Processing
 - o Image reformatting and sequence comparison
- OC in MRI
 - o Phantom scans for SNR and geometric accuracy
 - o Checking for MRI artifacts (motion, RF interference, ghosting)

PACS & Image Management - Practical

- Uploading CR/DR/CT/MRI images to PACS
- Retrieving and exporting studies
- DICOM viewer usage for measurements and annotations
- Comparing current images with previous studies

Safety Protocols in Advanced Imaging - Practical

- Radiation safety in CR, DR, and CT (ALARA principle)
- MRI safety drills and emergency procedures
- Contrast reaction management (basic first aid & drug preparation)

SEMESTER - IV

PAPER CODE	SUBJECT NAME	THEORY HOURS	PRACTICAL HOURS	THEORY MARKS	PRACTICAL MARKS
DMRIT401	QUALITY CONTROL	45 Min	1 Hrs.	50	50
	IN RADIOLOGY &				
	RADIATION SAFETY				
DMRIT402	IMAGE PROCESSING	45 Min	1 Hrs.	50	50
	(FILM				
	TECHNIQUES)				
DMRIT403	ADVANCED	45 Min	1 Hrs.	50	50
	RADIOGRAPHIC				
	TECHNIQUES				
DMRIT404	RADIATION	45 Min	1 Hrs.	50	50
	PROTECTION AND				
	SAFETY				

QUALITY CONTROL IN RADIOLOGY & RADIATION SAFETY

THEORY

1. Introduction to Quality Control (QC) in Radiology

- Definition & objectives of quality control in diagnostic imaging and radiotherapy
- Importance of QC in patient safety and image quality
- Regulatory requirements and guidelines (AERB, ICRP, NCRP, WHO)

2. QC in Conventional Radiography

- QC tests for X-ray machines:
 - kVp accuracy
 - o mA/mAs accuracy
 - Timer accuracy
 - Focal spot size measurement
 - Beam alignment & collimation
 - Half Value Layer (HVL) & filtration checks
 - Image quality evaluation using test phantoms
- Darkroom QC: safelight testing, film storage, processing chemicals

3. QC in Advanced Imaging Modalities

- Computed Radiography (CR)
 - Image plate uniformity test
 - Erasure cycle testing
- Digital Radiography (DR)
 - o Detector uniformity & calibration
 - Artifact detection & correction
- Computed Tomography (CT)
 - CT number accuracy (HU accuracy)
 - Low-contrast and high-contrast resolution
 - Slice thickness accuracy
 - CT dose index (CTDI) measurements
- Magnetic Resonance Imaging (MRI)
 - Signal-to-noise ratio (SNR) testing
 - Geometric distortion check
 - o Image uniformity & ghosting artifacts

4. QC in Radiotherapy Equipment

- Linear Accelerator (LINAC)
 - Output constancy checks

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Beam flatness & symmetry
- o Mechanical isocenter alignment

• Brachytherapy Units

- o Source strength verification
- Applicator calibration

• Treatment Planning Systems (TPS)

- Dose calculation accuracy
- Software integrity checks

5. Radiation Safety Principles

- Nature and types of ionizing radiation
- Radiation units: Exposure, Absorbed Dose, Equivalent Dose, Effective Dose (R, Gy, Sv)
- Biological effects of radiation: deterministic vs. stochastic effects
- ALARA principle (As Low As Reasonably Achievable)
- Time, distance, and shielding in radiation protection

6. Radiation Safety in Diagnostic Imaging

- Protective barriers in X-ray rooms
- Personal protective devices: lead apron, thyroid shield, lead glasses
- Use of beam collimation & filtration
- Patient dose reduction techniques (e.g., pulsed fluoroscopy, low-dose protocols in CT)

7. Radiation Safety in Radiotherapy

- Treatment room shielding design
- Controlled and supervised areas
- Radiation survey meters & area monitoring
- Brachytherapy source handling & storage safety

8. Radiation Monitoring

- Personnel monitoring devices:
 - TLD (Thermoluminescent Dosimeter)
 - o OSL (Optically Stimulated Luminescence dosimeter)
 - Pocket dosimeters
- Reading, reporting, and maintaining dose records

9. National & International Safety Guidelines

- AERB (Atomic Energy Regulatory Board) rules for diagnostic & therapeutic installations
- ICRP recommendations on occupational dose limits

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

NCRP guidelines for radiology practice

10. Quality Assurance (QA) Documentation

- QC logs and maintenance records
- Equipment service & calibration documentation
- Audit procedures for compliance

PRACTICAL

Conventional Radiography QC Tests

- **kVp Accuracy Test** using kVp meter or non-invasive analyzer
- mA/mAs Linearity Test verifying output consistency at different settings
- **Timer Accuracy Test** measuring exposure time accuracy
- Focal Spot Size Measurement using pinhole camera or slit camera method
- Beam Alignment & Collimation Test checking light field and radiation field congruence
- Half Value Layer (HVL) Measurement determining beam quality and filtration adequacy
- Automatic Exposure Control (AEC) Test consistency and reproducibility checks
- Film Processor QC safelight testing, chemical replenishment, temperature checks

Computed & Digital Radiography QC

- Image Plate Uniformity Test checking CR cassettes for uniform response
- CR Erasure Cycle Test verifying residual image removal
- DR Detector Uniformity Check ensuring even response across the panel
- Artifact Identification & Removal recognizing and correcting image artifacts
- Spatial Resolution & Contrast Resolution Measurement using standard test phantoms

CT Scanner QC

- **CT Number Accuracy Test** measuring HU values for water, air, bone, etc.
- **Low-Contrast Resolution Test** visualizing low-density differences in phantom
- **High-Contrast Resolution Test** detecting fine detail
- Slice Thickness Accuracy using ramp or wedge phantoms
- CT Dose Index (CTDI) Measurement using dosimetry phantoms and ion chambers

> MRI QC

- Signal-to-Noise Ratio (SNR) Test phantom measurements
- Geometric Accuracy Test checking dimensional fidelity of MRI images
- Image Uniformity Test uniformity across the FOV

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- **Ghosting & Artifact Evaluation** identifying causes and prevention
- Magnetic Field Homogeneity Test ensuring even magnetic field strength

Radiotherapy Equipment QC

- LINAC Output Constancy Check daily dose output verification
- **Beam Flatness & Symmetry Measurement** using water phantom or ion chamber array
- **Mechanical Isocenter Test** laser and gantry alignment verification
- **Brachytherapy Source Strength Verification** using well-type ionization chamber
- Treatment Planning System QA verifying calculated vs. measured dose

Radiation Safety Practical Skills

- Radiation Survey Meter Use measuring leakage radiation and background levels
- Area Monitoring conducting regular radiation surveys in diagnostic & treatment rooms
- **Shielding Verification** testing lead barriers, doors, and walls
- Personal Protective Equipment (PPE) Checks inspecting lead aprons, gloves, thyroid shields for cracks using fluoroscopy
- Radiation Signage & Labeling proper placement of warning signs in controlled areas

Personnel Dosimetry & Monitoring

- **TLD Badge Handling** correct use, wearing position, and storage
- **Pocket Dosimeter Reading** recording and logging exposures
- OSL Dosimeter Handling procedures for issue, use, and return
- Dose Record Maintenance updating occupational exposure logs

QC Documentation & Reporting

- Maintaining **QC Logs** recording test results and corrective actions
- Preparing Radiation Safety Audit Reports
- Equipment **Preventive Maintenance Scheduling**
- Reporting **Non-Compliance & Incident Cases** to Radiation Safety Officer (RSO)

IMAGE PROCESSING (FILM TECHNIQUES)

THEORY

1. Introduction to Image Processing in Radiology

- Definition and importance of image processing in diagnostic radiology
- Overview of analog vs. digital image processing

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Historical evolution of film processing techniques
- Role of image quality in diagnosis

2. X-Ray Film Fundamentals

- Composition of X-ray film
 - Base layer
 - Emulsion laver
 - Protective coating
- Types of X-ray films:
 - Screen films
 - Non-screen films
 - o Single-emulsion vs. double-emulsion films
 - Specialty films (mammography, dental, cine films)
- Film sizes and storage conditions

3. Film Sensitometry

- Characteristic curve (Hurter & Driffield curve)
- Base + fog level
- Film speed
- Film contrast and latitude
- Optical density measurement
- Factors affecting sensitometric properties

4. Screen-Film Systems

- Intensifying screens function, construction, and types
- Rare earth screens vs. calcium tungstate screens
- Screen-film matching for optimal image quality
- Screen speed, resolution, and efficiency

5. Darkroom Design & Equipment

- Layout and workflow of a radiographic darkroom
- Safe lighting types and requirements
- Film storage and handling protocols
- Darkroom ventilation and environmental control

6. Film Processing Techniques

- Manual film processing
 - o Steps: developing, rinsing, fixing, washing, drying
 - o Time-temperature relationship in development
 - Chemical composition of developer and fixer
- Automatic film processing

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Components of an automatic processor
- o Processing cycle and replenishment systems
- Advantages and limitations

7. Processing Chemicals

- Developer composition:
 - Developing agents (e.g., hydroquinone, phenidone)
 - o Preservatives, activators, restrainers
- Fixer composition:
 - Clearing agents (e.g., ammonium thiosulfate)
 - Acidifiers, hardeners, preservatives
- Common processing faults due to chemical issues

8. Image Quality Factors in Film Techniques

- Resolution, contrast, density, sharpness, and noise
- Factors affecting film image quality:
 - Exposure parameters
 - Processing conditions
 - Screen-film contact
 - Darkroom errors

9. Common Film Faults & Artifacts

- Causes and prevention of:
 - o Fogging (light, radiation, chemical)
 - Processing streaks
 - o Roller marks in automatic processing
 - Pressure marks and static artifacts
 - Screen scratches

10. Film Handling & Archiving

- Proper handling to prevent scratches and fingerprints
- Film identification methods
- Archival storage standards (temperature, humidity)
- Film retrieval and record-keeping systems

11. Quality Control in Film Processing

- Sensitometric control strips and step wedges
- Daily processor QC tests
- Replenishment rate checks
- Troubleshooting processing issues
- Maintaining processing logs

PARAMEDICAL EDUCATION & TRAINING COUNCIL Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

PRACTICAL

Darkroom Setup & Safety

- Demonstration of ideal **darkroom layout** for manual and automatic processing
- Setting up safe lighting and checking safe-light fog using the coin test
- Darkroom hygiene and maintenance protocols
- Safe handling and storage of unexposed and processed films

> Film Handling & Loading

- Loading and unloading X-ray cassettes in darkroom conditions
- Proper handling of intensifying screens and checking screen-film contact using wire mesh test
- Film identification methods (lead markers, printed labels)

Manual Film Processing

- Preparation of developer and fixer solutions
- Step-by-step manual film processing:
 - Development (time-temperature control)
 - Rinsing
 - o Fixing
 - Washing
 - Drying
- Demonstration of **temperature control** and its effect on image quality
- Observation of underdeveloped and overdeveloped films for learning purposes

Automatic Film Processing

- Loading films into an automatic processor
- Understanding processor parts and film transport path
- Checking and replenishing chemicals
- Daily and weekly maintenance of the processor

Sensitometry & Quality Control

- Preparing and using sensitometric strips
- Plotting a characteristic curve (H&D curve)
- Measuring **optical density** with a densitometer
- Recording base + fog level, speed, and contrast
- Comparing processed films under different development conditions

Chemical Maintenance

• Safe handling and disposal of processing chemicals

Web: https://paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.com/ Email id: paramedicaleducationcouncil.com/

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Cleaning intensifying screens with approved screen cleaner
- Replacing or regenerating exhausted developer and fixer
- Identifying chemical contamination problems

> Troubleshooting Film Faults

- Recognizing and correcting:
 - Light fog
 - Radiation fog
 - Chemical fog
 - o Reticulation marks
 - Static marks
 - o Roller marks in automatic processing
 - Uneven development or fixing stains

> Image Quality Assessment

- Comparing films processed at different times, temperatures, and chemical strengths
- Evaluating contrast, density, resolution, and sharpness visually
- Recording observations in QC logbook

> Archiving & Storage

- Proper drying and archiving of processed films
- Storing films in humidity- and temperature-controlled conditions
- Retrieving archived films efficiently

Practical Record Maintenance

- Maintaining daily processing QC records
- Documenting film faults and corrective actions taken
- Reporting processor malfunction and chemical change schedules

ADVANCED RADIOGRAPHIC TECHNIQUES

THEORY

1. Introduction to Advanced Radiography

- Evolution from conventional to advanced radiographic techniques
- Indications and applications of advanced imaging in diagnosis
- Comparison between general radiography and specialized procedures

2. Contrast Media in Advanced Imaging

Types: Positive (iodinated, barium sulfate) and Negative (air, CO₂)

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Properties, preparation, dosage, and administration routes
- Adverse reactions, contraindications, and emergency management
- Patient preparation and aftercare in contrast studies

3. Special Radiographic Procedures

a) Gastrointestinal Tract Imaging

- Barium Swallow anatomy visualized, technique, patient positioning
- Barium Meal indications, preparation, imaging sequence
- Barium Enema double and single contrast techniques, complication management
- **Small Bowel Enema** (Enteroclysis)
- Video fluoroscopy in swallowing disorders

b) Genitourinary System Imaging

- Intravenous Urography (IVU) indications, contraindications, procedure
- **Retrograde Pyelography** equipment, technique, patient care
- Micturating Cystourethrography (MCU) imaging sequence, radiation protection
- **Hysterosalpingography (HSG)** patient prep, aseptic techniques

c) Hepatobiliary System Imaging

- **Oral Cholecystography** principles, limitations
- Endoscopic Retrograde Cholangiopancreatography (ERCP) equipment and technique
- Percutaneous Transhepatic Cholangiography (PTC)

d) Musculoskeletal System Imaging

- **Arthrography** knee, shoulder, wrist techniques
- Contrast types and post-procedure care

e) Vascular Imaging

- **Angiography** principles, equipment, Seldinger technique
- Cerebral, coronary, peripheral angiography
- Digital Subtraction Angiography (DSA) basics

4. Radiographic Positioning for Advanced Procedures

- Specialized patient positioning for contrast and interventional studies
- Immobilization techniques
- Role of positioning aids

5. Fluoroscopy in Advanced Imaging

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Types of fluoroscopic equipment (image intensifier, flat panel detectors)
- Radiation dose considerations in fluoroscopy
- Spot filming and cinefluorography

6. Digital Techniques in Advanced Radiography

- CR and DR in special procedures
- PACS integration for advanced imaging
- Image enhancement and post-processing

7. Radiation Protection in Advanced Techniques

- ALARA principles for high-dose procedures
- Protective equipment for staff and patients
- Dose monitoring and recording

8. Infection Control & Patient Safety

- Sterile field maintenance in interventional and invasive procedures
- Aseptic technique in catheter-based studies
- Pre- and post-procedure monitoring

9. Quality Control in Special Procedures

- QC checks for fluoroscopic and angiographic equipment
- Contrast injector maintenance
- Image quality assessment criteria for advanced techniques

10. Recent Advances & Trends

- Cone Beam CT in interventional radiology
- Hybrid imaging (PET/CT, PET/MRI) in procedural planning
- AI-assisted positioning and dose optimization

PRACTICAL

> Patient Preparation & Communication

- Explaining procedure to patient and obtaining consent
- Checking for allergies and contraindications to contrast media
- Preparing patient physically and psychologically for the procedure
- Fasting and pre-procedure medication guidelines

> Contrast Media Handling

• Preparation and dilution of barium sulfate suspension

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Preparation of iodinated contrast media for IV and intra-cavitary use
- Safe handling, storage, and disposal of contrast media
- IV cannulation techniques and test dose administration
- Managing adverse reactions and emergency response

Gastrointestinal Radiography

- Barium Swallow: patient positioning, sequence of exposures, fluoroscopic observation
- Barium Meal: upper GI study positioning and exposure techniques
- **Barium Enema**: single and double contrast techniques, patient preparation, insertion of enema tip
- **Small Bowel Enema** (Enteroclysis): nasojejunal tube placement and imaging sequence
- Fluoroscopic swallowing function test

Genitourinary Imaging

- **Intravenous Urography (IVU)**: patient preparation, timing of exposures
- Retrograde Pyelography: assisting in sterile preparation and positioning
- Micturating Cystourethrography (MCU): catheter placement assistance, imaging during voiding
- **Hysterosalpingography (HSG)**: sterile preparation, handling of instruments and contrast

> Musculoskeletal Special Procedures

- **Arthrography** (knee, shoulder, wrist): sterile setup, positioning, exposure sequence
- Use of contrast injectors in joint studies
- Post-procedure care and immobilization

Vascular Imaging

- Preparation for angiographic procedures (cerebral, coronary, peripheral)
- Sterile draping and assisting during catheter insertion
- Setting up and operating power injectors for contrast administration
- Digital Subtraction Angiography (DSA) image acquisition and storage

> Hepatobiliary Imaging

- Assisting in ERCP and PTC procedures
- Handling of catheters, guidewires, and sterile instruments
- Patient positioning and monitoring during procedure

> Fluoroscopy Operation

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Positioning the patient for various fluoroscopic studies
- Adjusting exposure factors to optimize image quality while minimizing dose
- Spot filming and cine acquisition techniques
- Assisting in mobile C-arm fluoroscopy

> 9. Digital Imaging Skills

- Operating CR/DR systems for special procedures
- Post-processing images for optimal diagnostic quality
- Uploading studies to PACS and tagging metadata correctly

> Radiation Safety Measures

- Use of lead aprons, thyroid shields, and lead glass screens
- Applying ALARA principles during high-dose procedures
- Recording and monitoring dose in special investigations

> Infection Control

- Hand hygiene and sterile glove techniques
- Cleaning and sterilizing special procedure equipment
- Proper waste disposal according to biomedical waste guidelines

Logbook & Case Documentation

- Recording details of each advanced procedure performed/assisted
- Documenting contrast type, dose, and any complications
- Maintaining patient confidentiality in records

RADIATION PROTECTION AND SAFETY

THEORY

1. Introduction to Radiation Protection

- Definition and objectives of radiation protection
- Historical background of radiation hazards
- Importance of radiation safety in diagnostic imaging
- Roles and responsibilities of a radiologic technologist in radiation safety

2. Radiation Physics Basics (Relevant to Safety)

- Nature and properties of ionizing radiation
- Units of measurement:
 - Exposure (Coulomb/kg)
 - Absorbed dose (Gray)

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Equivalent dose (Sievert)
- Activity (Becquerel, Curie)
- Interaction of radiation with matter (photoelectric effect, Compton scattering, pair production)
- Factors affecting radiation dose (time, distance, shielding)

3. Biological Effects of Radiation

- Deterministic effects (tissue reactions) and stochastic effects (probabilistic effects)
- Short-term vs long-term effects
- Somatic vs genetic effects
- Acute radiation syndrome
- Effects on specific organs (skin, eyes, thyroid, gonads, bone marrow)

4. International Guidelines and Regulatory Framework

- International Commission on Radiological Protection (ICRP) recommendations
- Atomic Energy Regulatory Board (AERB) India
- Basic Safety Standards (BSS)
- Permissible dose limits for radiation workers and the public
- Dose constraints for pregnant workers

5. Radiation Detection and Monitoring

- Personal dosimeters:
 - Film badges
 - Thermoluminescent dosimeters (TLD)
 - Pocket dosimeters
- Area monitoring devices:
 - Geiger-Müller counters
 - Ionization chambers
 - Scintillation detectors
- Calibration and maintenance of dosimeters

6. Principles of Radiation Protection (ALARA)

- Time: minimizing exposure duration
- Distance: inverse square law application
- Shielding: lead barriers, lead aprons, thyroid collars, lead glasses
- Beam collimation and filtration
- Use of gonadal shields, breast shields, and immobilization devices

7. Radiation Protection in Diagnostic Radiology

- Safety measures in conventional radiography
- Protection during fluoroscopy and mobile X-ray

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Safety in computed tomography (CT) dose optimization, AEC use
- Digital radiography dose considerations
- Radiation safety in mammography and dental radiography

8. Radiation Protection in Advanced Imaging

- MRI safety (RF, magnetic field hazards) though non-ionizing, relevant to technologists
- Safety in nuclear medicine imaging (radioisotope handling, storage, and disposal)
- Safety during interventional radiology and angiography procedures

9. Shielding Design and Room Layout

- Protective barriers (primary and secondary)
- Controlled and uncontrolled areas
- Workload, use factor, and occupancy factor calculations for shielding design
- Lead glass windows and control console design

10. Radiation Safety for Patients

- Justification of radiographic procedures
- Optimizing patient dose exposure factor selection
- Pediatric radiation protection measures
- Pregnancy screening before exposure
- Use of dose tracking and patient dose records

11. Radiation Emergencies

- Accidental overexposure management
- First aid in radiation accidents
- Reporting protocols for radiation incidents to authorities
- Decontamination procedures for radioactive spills

12. Quality Assurance in Radiation Safety

- Periodic equipment testing (kVp accuracy, timer accuracy, filtration, leakage)
- Preventive maintenance of X-ray machines
- Documentation and record keeping for safety compliance
- Audits and inspections by regulatory bodies

PRACTICAL

Familiarization with Radiation Safety Devices

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Identification and demonstration of:
 - o Lead aprons, thyroid shields, gonadal shields, lead gloves
 - o Lead glass viewing windows and barriers
 - o Immobilization devices for patient safety
- Checking integrity of protective devices (visual inspection, damage detection)

Use of Personal Radiation Monitoring Devices

- Wearing and handling of film badges, TLD badges, pocket dosimeters
- Proper placement of dosimeters on the body
- Monthly exchange and record maintenance of badge readings
- Interpretation of dose reports and corrective actions if limits approach

Area Monitoring Procedures

- Demonstration of Geiger-Müller counter usage for detecting radiation levels
- Use of ionization chambers and survey meters in diagnostic areas
- Mapping radiation leakage around X-ray tubes and control consoles
- Room radiation survey documentation and compliance check

> ALARA Principle Application

- Practical demonstration of reducing exposure by:
 - Time minimization (shorter fluoroscopy times)
 - o Increasing distance (use of mobile lead screens, positioning)
 - Shielding (correct placement of barriers)
- Practical application of inverse square law using measurements

Patient Radiation Protection Techniques

- Selection and placement of gonadal shields in different projections
- Use of collimators and beam-limiting devices in practice
- Filtration checks for X-ray tubes
- Pregnancy screening protocols before imaging
- Pediatric positioning and shielding demonstration

Equipment Safety Checks

- Testing of protective tube housing for leakage
- Measurement of half-value layer (HVL) for filtration verification
- Timer accuracy check for exposure control
- Checking collimator light-beam alignment and field size accuracy

> Safety in Special Imaging Procedures

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

- Radiation protection during mobile X-ray safe positioning and distance maintenance
- Fluoroscopy dose reduction techniques (pulsed mode, last image hold)
- CT scan dose optimization demonstration (mA, kVp, pitch adjustments)
- Safety measures during interventional radiology (shield placement, scatter reduction)

Room Shielding Verification

- Identification of primary and secondary barriers in an X-ray room
- Checking lead lining thickness with radiation survey meters
- Testing lead glass window integrity

Emergency Response Drills

- Steps in case of accidental overexposure
- Demonstration of evacuation procedures in a radiation leak scenario
- Handling and reporting of damaged dosimeters
- Basic decontamination procedure for radioactive contamination (if nuclear medicine setup exists)

> Documentation and Quality Assurance

- Maintenance of radiation safety logbooks
- Record-keeping of personal dose reports and equipment QA results
- Preparation of a monthly radiation safety compliance report
- Familiarization with AERB inspection checklist

LIST OF HOLIDAYS

TOTAL DAY IN 1 YEAR	365/366	
SUNDAY	52 DAYS	
SUMMER VACATION	10 DAYS	
WINTER VACATION	10 DAYS	
GAZETTED HOLIDAYS	23 DAYS	
OTHER HOLIDAYS	20 DAYS	
TOTAL HOLIDAYS	115 DAYS	
TOTAL WORKING DAYS	365-115=250	

Ch. No.157/1, Near Laxmi Nagar, Metro Station Gate No 1, Vikas Marg, Delhi-92

TOTAL HOURS

THEORY CLASS PER DAY	3 HOURS	
PRACTICAL CLASS PER DAY	4 HOURS	
TOTAL HOURS PER DAY	7 HOURS	
TOTAL HOURS IN 1 YEAR	250*7=1750	
TOTAL HOURS IN 6 MONTHS	875 HOURS	

Paramedical Education & Training Council

 $Web: \underline{https://paramedicaleducationcouncil.com/} \quad \underline{Email\ id: \underline{paramedicaleducationcouncil@gmail.com}}$